Preaload Image

INTRO TO DATA SCIENCE, ML AND AI

1.1. What is Data Science?
1.2. What is ML? Parametric , non parametric
1.3. What is AI?
1.4. What a Data Scientist can provide solutions?
    1.4.1. Predict Number(Regression Analysis)
    1.4.2. Predict Category(Categorical Analysis)
    1.4.3. Group things(Clustering Analysis)
    1.4.4. Find Odds out(Anomaly Detection)
    1.4.5. Automate Decision(Reinforcement Learning)
1.5. Types of Machine Learning
    1.5.1. Supervised Learning
    1.5.2. Unsupervised Learning
    1.5.3. Reinforcement Learning
1.6. Files Types
    1.6.1. Structured, Semi-Structured, Unstructured

PYTHON

2.1. Data Types
    2.1.1. int, float,boolean, list, dictionary, tuple,set, string
2.2. Conditional and Looping Statements
    2.2.1. If, If..Else, For, While, For each
2.3. Range, Enumerate, Lambda functions, List Comprehension
2.4. Python for Data Science(Numpy and Pandas)

STATISTICS AND EXPLORATORY DATA ANALYSIS

3.1. Types of data
    3.1.1. Numerical
    3.1.2. Categorical
3.2. Exploratory Data Analysis(Univariate, Bivariate Analysis)
    3.2.1. Data summarization methods; Tables, Graphs, Charts, Histograms,
Frequency distributions, Relative frequency measures of central tendency
and dispersion; Box Plot, etc
    3.2.2. Numeric
        3.2.2.1. Measure of central tendency
            3.2.2.1.1. mean, median, mode, midrange, weighted mean
    3.2.2.2. Measure of variation
        3.2.2.2.1. range, variance, standard deviation, mean
deviation,coefficient of variation
    3.2.2.3. Measures of position
        3.2.2.3.1. percentile, quartiles, Interquartile Range, decile, outliers
    3.2.2.4. Five Point Summary
        3.2.2.4.1. Min,1st Quartile, median, 3rd Quartile, max
    3.2.2.5. Data distribution
        3.2.2.5.1. Continuous and discrete distributions, Transformation of
random variables
        3.2.2.5.2. distribution, Skewness[symmetry] and kurtosis[peak]
    3.2.2.6. Charts
        3.2.2.6.1. Scatter Plot, Box Plot, Histogram
    3.2.3. Categorical
        3.2.3.1. Measurements
            3.2.3.1.1. Frequencies(total count), , likelihood table, Levels, Group
count, proportion, percentage
    3.2.3.2. Charts
        3.2.3.2.1. Pie Chart, Bar Chart
    3.2.4. Null
        3.2.4.1. NA, NaN frequency
        3.2.4.2. NAs count, Empty Values Count, NULL values count
3.3. Advanced Statistics
Central Limit Theorem, Random Variable, Probability Density Function,
Probability Mass Function, Distribution – Normal, Binomial, Uniform, P – Value,
T- test, F- Statistics, Student Test, Chi-Square Test, Hypothesis Testing, A/B
Testing, Correlation and Covariance

PROBABILITY

4.1.Trail, Experiment
4.2. Odds & Events – Dependent Events, Independent Events
4.3. Conditional Probability
4.4. Bayes Theorem
4.5. Probability Density Function

MATHEMATICS

5.1. Algebra, Linear Algebra, Vector and Matrix Algebra, Eigenvalues, Eigenvectors,
Calculus, Set Theory

MACHINE LEARNING

6.1. Data Preprocessing
    6.1.1. Data Cleaning:
        6.1.1.1. Filling in missing values
        6.1.1.2. Smoothing the noisy data
        6.1.1.3. Resolving inconsistencies in the data.
        6.1.1.4. Treatment of Outliers
    6.1.2. Data Transformation:
        6.1.2.1. Log Transformation, Cube Root, Square Root(skewness)
        6.1.2.2. Min-Max Normalization(scaling)
        6.1.2.3. Z-Score Standardization (scaling)
    6.1.3. Data Reduction:
        6.1.3.1. PCA
    6.1.4. Data Discretization:
        6.1.4.1. Binning
    6.1.5. Handling Imbalanced dataset
6.2. Regression
    6.2.1. Simple Linear Regression
    6.2.2. Multiple Linear Regression
    6.2.3. Decision Tree Regression
    6.2.4. Random Forest Regression
    6.2.5. Support Vector Regression
    6.2.6. K-NN for Regression
6.3. Classification
    6.3.1. Naive Bayes
    6.3.2. Decision Tree
    6.3.3. Random Forest(type of ensemble ML model, bagging or bootstrapping
aggregation)
    6.3.4. K-NN for Classification(using distance and angle)
    6.3.5. Logistic Regression
    6.3.6. Linear Discriminant Analysis
    6.3.7. Support Vector Machine
6.4. Clustering
    6.4.1. Centroid Model – K-Means clustering
    6.4.2. Connectivity Model- Hierarchical clustering
    6.4.3. Distribution Model – Expectation-Maximization Algorithm
    6.4.4. Density Model – DBSCAN
6.5. Time Series Analysis and Forecasting
6.6. Association Rules
    6.6.1. Apriori – Market Basket Analysis
6.7. Dimensionality Reduction
    6.7.1. PCA
    6.7.2. LDA
    6.7.3. Kernel PCA
6.8. Model Evaluation Metrics
    6.8.1. Classification
        6.8.1.1. Confusion Matrix
        6.8.1.2. ROC and AUC Curve
        6.8.1.3. Log Loss
    6.8.2. Regression
        6.8.2.1. MAE
        6.8.2.2. MSE
        6.8.2.3. RMSE
        6.8.2.4. MAPE
        6.8.2.5. MPE
6.9. Model Tuning
    6.9.1. Bias – Variance Trade off(overfit, underfit, best fit)
    6.9.2. K-Fold Cross Validation
    6.9.3. Algorithm Parameter Tuning

BUSINESS USE CASES – PROJECTS

7.1. Natural Language Processing – Text Mining, NLP
7.2. Recommendation Engine(Amazon, Netflix)
7.3. Click Through Rate Prediction(Digital Marketing)
7.4. Spam Mail Detector
7.5. Diabetes Prediction
7.6. Automobile Data – Exploratory Data Analysis

DEPLOYMENT AND PRODUCTIONIZATION

8.1. Deploy Machine Learning models in Production as APIs using Flask
8.2. Deploy Machine Learning models in Production as APIs Azure ML

BIG DATA

9.1. Hadoop Architecture, HDFS
9.2. Hive
9.3. Spark SQL
9.4. SparkML

whatsapp

Dreams Plus an Exin accredited organization for Training, Certification, Courseware in Chennai and in several other places with a professional EXIN certification.

To ensure a practical learning experience for our students, we conduct high-quality training using VMEdu’s online and classroom course material presented in multiple formats such as podcasts, video lecturers, simulated tests and mobile apps.

DreamsPlus an Peoplecert Accredited Organization for Training, Certification, Courseware in Chennai and several other places.

Leading training organisation with PearsonVUE test centre  facility. Our trained students and new students could use the testing facility to deliver more than 200+ It exams.. Pearson VUE — is  the global leader in computer-based testing.

Enjoy  your testing  and training  experience in one place.