Preaload Image


1.1. What is Data Science?
1.2. What is ML? Parametric , non parametric
1.3. What is AI?
1.4. What a Data Scientist can provide solutions?
    1.4.1. Predict Number(Regression Analysis)
    1.4.2. Predict Category(Categorical Analysis)
    1.4.3. Group things(Clustering Analysis)
    1.4.4. Find Odds out(Anomaly Detection)
    1.4.5. Automate Decision(Reinforcement Learning)
1.5. Types of Machine Learning
    1.5.1. Supervised Learning
    1.5.2. Unsupervised Learning
    1.5.3. Reinforcement Learning
1.6. Files Types
    1.6.1. Structured, Semi-Structured, Unstructured


2.1. Data Types
    2.1.1. int, float,boolean, list, dictionary, tuple,set, string
2.2. Conditional and Looping Statements
    2.2.1. If, If..Else, For, While, For each
2.3. Range, Enumerate, Lambda functions, List Comprehension
2.4. Python for Data Science(Numpy and Pandas)


3.1. Types of data
    3.1.1. Numerical
    3.1.2. Categorical
3.2. Exploratory Data Analysis(Univariate, Bivariate Analysis)
    3.2.1. Data summarization methods; Tables, Graphs, Charts, Histograms,
Frequency distributions, Relative frequency measures of central tendency
and dispersion; Box Plot, etc
    3.2.2. Numeric Measure of central tendency
   mean, median, mode, midrange, weighted mean Measure of variation range, variance, standard deviation, mean
deviation,coefficient of variation Measures of position percentile, quartiles, Interquartile Range, decile, outliers Five Point Summary Min,1st Quartile, median, 3rd Quartile, max Data distribution Continuous and discrete distributions, Transformation of
random variables distribution, Skewness[symmetry] and kurtosis[peak] Charts Scatter Plot, Box Plot, Histogram
    3.2.3. Categorical Measurements
   Frequencies(total count), , likelihood table, Levels, Group
count, proportion, percentage Charts Pie Chart, Bar Chart
    3.2.4. Null NA, NaN frequency NAs count, Empty Values Count, NULL values count
3.3. Advanced Statistics
Central Limit Theorem, Random Variable, Probability Density Function,
Probability Mass Function, Distribution – Normal, Binomial, Uniform, P – Value,
T- test, F- Statistics, Student Test, Chi-Square Test, Hypothesis Testing, A/B
Testing, Correlation and Covariance


4.1.Trail, Experiment
4.2. Odds & Events – Dependent Events, Independent Events
4.3. Conditional Probability
4.4. Bayes Theorem
4.5. Probability Density Function


5.1. Algebra, Linear Algebra, Vector and Matrix Algebra, Eigenvalues, Eigenvectors,
Calculus, Set Theory


6.1. Data Preprocessing
    6.1.1. Data Cleaning: Filling in missing values Smoothing the noisy data Resolving inconsistencies in the data. Treatment of Outliers
    6.1.2. Data Transformation: Log Transformation, Cube Root, Square Root(skewness) Min-Max Normalization(scaling) Z-Score Standardization (scaling)
    6.1.3. Data Reduction: PCA
    6.1.4. Data Discretization: Binning
    6.1.5. Handling Imbalanced dataset
6.2. Regression
    6.2.1. Simple Linear Regression
    6.2.2. Multiple Linear Regression
    6.2.3. Decision Tree Regression
    6.2.4. Random Forest Regression
    6.2.5. Support Vector Regression
    6.2.6. K-NN for Regression
6.3. Classification
    6.3.1. Naive Bayes
    6.3.2. Decision Tree
    6.3.3. Random Forest(type of ensemble ML model, bagging or bootstrapping
    6.3.4. K-NN for Classification(using distance and angle)
    6.3.5. Logistic Regression
    6.3.6. Linear Discriminant Analysis
    6.3.7. Support Vector Machine
6.4. Clustering
    6.4.1. Centroid Model – K-Means clustering
    6.4.2. Connectivity Model- Hierarchical clustering
    6.4.3. Distribution Model – Expectation-Maximization Algorithm
    6.4.4. Density Model – DBSCAN
6.5. Time Series Analysis and Forecasting
6.6. Association Rules
    6.6.1. Apriori – Market Basket Analysis
6.7. Dimensionality Reduction
    6.7.1. PCA
    6.7.2. LDA
    6.7.3. Kernel PCA
6.8. Model Evaluation Metrics
    6.8.1. Classification Confusion Matrix ROC and AUC Curve Log Loss
    6.8.2. Regression MAE MSE RMSE MAPE MPE
6.9. Model Tuning
    6.9.1. Bias – Variance Trade off(overfit, underfit, best fit)
    6.9.2. K-Fold Cross Validation
    6.9.3. Algorithm Parameter Tuning


7.1. Natural Language Processing – Text Mining, NLP
7.2. Recommendation Engine(Amazon, Netflix)
7.3. Click Through Rate Prediction(Digital Marketing)
7.4. Spam Mail Detector
7.5. Diabetes Prediction
7.6. Automobile Data – Exploratory Data Analysis


8.1. Deploy Machine Learning models in Production as APIs using Flask
8.2. Deploy Machine Learning models in Production as APIs Azure ML


9.1. Hadoop Architecture, HDFS
9.2. Hive
9.3. Spark SQL
9.4. SparkML

Dreams Plus an Exin accredited organization for Training, Certification, Courseware in Chennai and in several other places with a professional EXIN certification.

To ensure a practical learning experience for our students, we conduct high-quality training using VMEdu’s online and classroom course material presented in multiple formats such as podcasts, video lecturers, simulated tests and mobile apps.

DreamsPlus an Peoplecert Accredited Organization for Training, Certification, Courseware in Chennai and several other places.

Leading training organisation with PearsonVUE test centre  facility. Our trained students and new students could use the testing facility to deliver more than 200+ It exams.. Pearson VUE — is  the global leader in computer-based testing.

Enjoy  your testing  and training  experience in one place.